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ABSTRACT

The performance of the S-192 Multispectral Scanner is
evaluated using the principles of modern communication theory.
This method permits a unified treatment of the interrelated design
questions of detector noise and frequency response, aperture size
and scan rate, digital sampling, and system transient response.

Quantitative estimates of expected performance are
given for the class of ground radiance functions whose auto-
correlation functions are exponential in the radius. Detector
performance is treated parametrically and other system parameters
have their design values.

The principal results are:

1. The optimum sampling rate for a channel whose detector
just meets the noise specification is 1.3 samples per Instantaneous
Field of View (IFOV).

2. The present S-192 design sampling rate for five of the
thirteen channels is 1.1 samples per IFOV. Because the total
system error has a shallow minimum, the design sampling rate
is close to optimum. This result is in opposition to the view
held in some guarters that the S5-192 system is digital data
bandwidth limited.

3. Sampling the remaining eight channels at a rate of 2.2
samples per IFOV does not improve system performance.
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1.0 INTRODUCTION

1.1 General

This paper is devoted to the application of the
principles of modern statistical communication theory to the
performance analysis of the S-192 Multispectral Scanner
system. This method enjoys the advantage of providing a
unified treatment of the interrelated design questions of detector
noise and frequency response, aperture size and scan rate,
digital sampling rate, and system transient response. In order
to provide a basis for a parametric study, a system performance
measure must be established. Image gquality, that is the
ability of the system to accurately view, record, and reconstruct
a given ground scene, is the gqualitative description of system
performance. The basic difference between the approach used
in this paper and current practice for S-192 is the method of

quantifying or measuring image quality.



1.2 Current S-132 System Performance Specification

One specification of image quality for S-192 is Noise
Equivalent change in Reflectance (NEAp). The End Item Specification
for S-192 [1l]* places an upper limit on NEAp for the first 12
bands of 1.0%.** 1In its narrowest interpretation, NEAp can be
restricted to be a measure of detector performance only {[2]. The
wider interpretation of NEAp can include such overall system
properties as detector electronics (including boost circuits,
filters, preamplifiers) and noise sources other than the detector
itself [3,4]. Basically, NEAp is an inverse signal-to-noise
ratio and it represents an important first step in estimating
required detector properties. Its major limitation as a measure
of system performance is that, by itself, it is not flexible
enough to provide the kind of trade-off capability required in
design and analysis. For example, NEAp can be easily reduced
by providing stronger post detector filtering. However, such
improvement in NEAp is taken at the expense of the system fidelity
capability. NEAp does not provide a proper trade-off point. To
insure fidelity, the NEAp specification can be supplemented with
some specification on system bandwidth properties, as is done for
S-192. It is not easy to do this guantitatively with the trade-

off clearly visible.

1.3 Proposed Approach

The most general approach to quantifying image quality

would appear to be a comparison of the actual system input with

*Square brackets indicate References.
**The thirteenth band is the thermal band and will not be

considered here.



system output, and this is usually carried out in a mean
squared sense. That is, if T(x,y) is the actual radiance
of the ground scene and T'(x,y) is the radiance as viewed,
recorded and reconstructed by the system, then a normalized

error, ¢, is defined by

—-1/2
X/2 Y/2
- : 1 1 [ ' 2
e =l lim & = [ [ ITlx,y) =T (x,y) ] dxdy (1.1)
X,Y-—)oo T ’ id
-X/2 -Y/2
where T is the mean ground radiance. Eg. (l1.1l) represents the

classical mathematical definition of a normalized root mean
squared (rms) error and all reference in this paper to rms error
is based on Egq. (1.1). If the system input were deterministic,
Eg. (1.1) could be used directly. However, it is indicated in
Section 3.2 that a stochastic model of ground radiance appears
to be more desireable and is therefore employed. Thus, auto-
correlation functions, Fourier analysis and power spectral
density functions must be introduced to evaluate Eg. (l1l.1).
Application of the latter techniques to electro-optical systems

has a strong technical foundation [5,6,7,8,9].

1.4 Organization

Section 2 defines the terms and introduces the
concepts required for the theoretical analysis in Section 3.3,
Sections 3.1 and 3.2 are general descriptions of the system
model. Section 4 discusses the details of the actual S-192
system components and Sections 5 and 6 contain, respectively,
the results and conclusions. For the reader not interested in
the detailed theoretical analysis, it is necessary to read only

Sections 3.1 and 3.2, Section 4.11, Section 5, and Section 6.



REVIEW OF CONCEPTS AND DEFINITIONS

2.1 Fourier Transform Pair

The two dimensional Fourier transform pair used in

this paper is:

\
. -27j (k_x+k_y)
H(k_,k_) =jj h(x,y)e Xy dxdy
x' Ty
and > (2.1)
” 2nj(kxx+kyy)
h(x,y) =f[ H(kx,ky)e dkxdky
i J

The following notation will also be employed:

H(kx,ky) F{h(x,y)!}

-1

2.2 Unit Impulse and Impulse Response Functions

The unit impulse function, also termed the Dirac

delta function, §(x,y), is defined by

ff é(x—xo,y-yo)f(x,y)dxdy = f(xo,yo) (2.2)

- For more details see, for example, Papoulis [10].
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FIGURE 2.1

If we subject a system or a component of the system to a unit
impulse function as shown in Figure 2.1, then the output is
termed the impulse response function, h(x,y). The impulse

response function has the following property.

g; (x, v} g5 (x. y)
—_————— SYSTEM e

FIGURE 2.2

If h(x,y) is the impulse response function of the system in
Figure 2.2, and the system is subjected to an input gi(x,y)

then the output is [10]

go(x,y) = ‘[[ gi(g,n)h(x—z,y—n)dgdn (2.3)

It is therefore sufficient to represent a system by its impulse

response function.



2.3 System Transfer Function

A system or a system component may also be represented
by its transfer function. The transfer function is simply the
Fourier transform of the impulse response function. Thus, if
h(x,y) is the impulse response function, the system transfer

function, H(kx,ky), is from Eq. (2.1)
z —2nj(kXx+kyy)
H(kx’ky) = F{h(x,y)} = JC[ h(x,y)e dxdy (2.4)

The advantage of representing a system by its transfer function,
n certain cases, will be shown later.

i
2.4 Autocorrelation Function

The autocorrelation function, Ag(x,y), of a variable

g(x,y) is defined as

X/2 Y/2
A (x,y) = lim f% J( ]. g(&,n)g(g+x,n+y)dedn (2.5)
g X’Y_>°° .
-X/2 =-Y/2

Autocorrelation functions are most often used to describe random

variables [9]. Note the important property that
X/2 Y/2
A_(0,0) = lim = J[ j( g(g,n) %agan = g2 (2.6)
g X, Y>w
-X/2 -Y/2

where 92 is the mean square value of g(x,y), assumming the mean

square value exists. An alternate representation for Ag(x,y) is

Ag(x,y) = E{gg+} (2.7)




where E{ } represents the "expected value" operation and the
"+" subscript indicates that the second g is incremented
(just as in Eq. 2.5).

2.5 Crosscorrelation Function

The crosscorrelation function of two variables,

g(x,y) and f£(x,y), is defined by

X/2 Y/2
Co g = lim f% J( Jr g(g+x,n+y) £ (g,n)dedn (2.8)
g+ X,Y—>oo
-X/2 -Y/2

where the "+" subscript after the g indicates the incremented

variable. An equivalent representation is

= E £ 2.9
Cg+f {g+ } ( )

2.6 Power Spectral Density Function

The power spectral density function (PSD), Pg(kx,ky),
of a variable g(x,y) is defined as the Fourier transform of the
autocorrelation function of g(x,y):; thus,

® —2nj(kxx+kyy)
Pk, k) = FA (xy)) =[ng(X,y)e dxdy (2.10)

As mentioned in Section 2.5, the autocorrelation function, and
hence the PSD function, are usually associated with stochastic
variables rather than deterministic variables. The term "power"
in PSD does not in general indicate that the PSD function has
units of mechanical or electrical power. A good physical
interpretation of PSD is given by Lee [6]. From Egs. (2.10) and
(2.1)




y 213 (k x4k y)
A (x,y) =[P (k_,k )e dk_dk 2.11
g( y) ‘[jﬂg <' Xy <Ky ( )

Combining Egs. (2.11) and (2.6) leads to an alternate way of

determining the mean square value of g(x,y):

2
= A (0,0) = P _(k_,k _)dk_dk 2.12
g° = 2,(0,0 jf g (eyrky ) dk dk (2.12)

A cross-power spectral density function can also be defined;

k ,k = F{C , .
Pg+f( % y) { g+f(x y)}

2.7 Further Input/Output Relationships

Eg. (2.3) is a direct input/output relationship which
is advantageous when dealing with deterministic variables.
Stochastic variables, however, are represented by correlation
and/or PSD functions and it is therefore helpful to write down
the input/output relations governing these quantities. If the
input variable gi(x,y) of Figure 2.2 has an autocorrelation
function Ag'(x,y) then it can be shown that [6,8]

1

A (x,y) = A_ (x,9)*h(x,y)*h(-x,-y) (2.13)
go gi

where h(x,y) is the impulse response function of the system

an& the asterisk represents the convolution operation; i.e.,

g(x,y)*h(x,y) =_[[g(€,n)h(x—€,y-n)d£dn




It may also be shown that [8,9]

(@]
I

Ag (x,y)*h(-x,-y) (2.14)
i+’ o i
and

Q
il

Ag (x,y) *h(x,y) (2.15)
i“o+ i

The corresponding input/output relationships for the PSD

functions are found by taking the Fourier transform of

Egs. (2.13), (2.14) and (2.15):
2
P =P |H(X_,k )| (2.16)
go 93 Xy
= P_ H(k_,k ) (2.17)
9i+90 9; %
and
P = P_H(k_,k ) (2.18)
990+ g; XY

where H(kx,ky) is the transfer function of the system and the
bar over a function represents the complex conjugate unless
otherwise stated. The advantage of the use of the PSD - trans-
fer function representation over that of the corresponding
correlation relationship is that one substitutes multiplication

for convolution.

2.8 Ssampled Functions

A few properties of sampled functions are required
for the analysis of the scanning system. Some of these properties
are derived by various methods in References 10, 11 and 12. They
are rederived in Appendices A and B using a more unified approach.
For simplicity functions of a single variable will be discussed;
the extension to functions of two or more variables is straight-
forward. It is assumed that a function which is sampled at discrete

intervals, a distance ti apart, may be represented by
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r\l [vo]
g(t) = 2: g(t)é(t/t,~n) (2.19)
n=-—c

where the tilde over the t indicates that g(t) is sampled at
discreet values of t. (The advantage of this notation becomes
clear when sampling functions of two or more variables.) Based
on Eq. (2.19) the following properties of sampled functions
are derived in Appendix A. If a sampled function g(%) can be
represented by Eq. (2.19), then its autocorrelation function
E{g(%)+g(%)}, takes the form

Ag(%) = E{g(®) g(¥)) = 2: A (£)s(t/t;-n) (2.20)
n=-
where Ag(t) is the autocorrelation function of g(t).
The crosscorrelation function of a sampled function g(%) and
a non-sampled function h(t) can be shown to be equal to the
crosscorrelation function of the unsampled functions g(t) and

h(t) ; that is (Bg. (A-17))

E{g(£) (h(t)} = C_ y (£) (2.21)
4

Setting g(t) = h(t) in Eq. (2.21) gives
n
E{g(t) g(t)} = Cg+g(t) = Ag(t) (2.22)

As a result of Egs. (2.20), (2.21) and (2.22), the following
identities are established in Appendix B. The PSD function,

ﬁg(f), of a sampled variable g(%) can be written in terms of

of the autocorrelation function as (Eg. (B-6))
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o —2njmfti

ﬁg(f) = 2: A (mt e t, (2.23)

m=-o

where f is the Fourier transform variable associated with t

and ti is the interval between samples. The mean square value,

gz(%), of a sampled function g(%) can be found from (Eg. (B-9))

l/2ti

g2 = ﬁg(f)df (2.24)

—l/2ti

Finally, the relationship between the PSD function of a sampled
guantity g(%) and the PSD of its non-sampled generator g(t) is
(Eq. (B-14))

oo

,

P (f) = P (f-m/t.) (2.25)

jo e 3 e,

m=-—c
Pqf) SAMPLER Py(f)
—_— Hf) I——— —
shp
FIGURE 2.3

As a result of Egs. (2.16) and (2.25) the input/output relation-

ship of the system shown in Figure 2.3 is
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. 2
P,(f) = E: Py (f-m/t,) H(f—m/ti)’ (2.26)
m=-—oo

Also, assuming that the signal entering H(f) in Figure 2.3
is not sampled, Egs. (2.21), (2.17) and (2.18) yield

p (f)
21,

Pl(f)ﬁ(f) (2.27)

and

P (£)
2+l

Pl(f)H(f) (2.28)

On the other hand, if a sampler did exist before H(f), then
it can be demonstrated that

o0

m, = m
Py, (£) = E: Py (f- TH(E- &) (2.29)
+ e oo 1 1
and
P, L (f) = P, (f~ ) H(f- ) (2.30)
2,1 2: 1 £ £

m=—oo




3.0 SYSTEM MODEL AND ANALYSES

3.1 General

Figure 3.1 is a representation of the S-192 scanning
system as it operates aboard the spacecraft. The ground track
of the spacecraft is the y-direction and the cross-track direction
is the x-direction. The values of the various parameters in
Figure 3.1 are consistent with the S$-192 multispectral scanner.
The upper loop of Figure 3.2 represents the model of the line
scanning image system used to represent the S-192 system. The
Hyy H2, H3 and H4 are the transfer functions of the major system
components. The kX and ky are the spatial frequencies (cycles/
ft) associated with the Fourier transform. The action of the
xX-scanner and y-sampler converts the two dimensional signal,
T(x,y) into a one dimensional analog signal. The scan rate v
can be used to transfer the electrical component's dependency
on temporal frequency f (Hz) to dependency on kx'

As the spacecraft moves over its ground track, the
target radiance, T(x,y), passes through an aperture Hl which
scans in the cross-track direction. The circular scanning
operation is carried out such that concentric bands of the
ground are scanned. However, since data are taken only over
120° of the scan circle (See Figure 3.1), it is assumed that
there is a linear scan in the x-direction at a constant value
of y. Hence the total effect of this operation is to scan
in x and sample in y. The radiance signal is then relayed
to the detector, H2,
Various electronics (boost circuit, filter, etc.) follow the
detector and are lumped in H,. The output of Hy is then pre-

pared for digital recording on tape. This involves sampling

which converts it to an electrical signal.

in time (or equivalently, x) and quantization. At some later
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time, this sampled signal is passed through a reconstruction
filter, H4, which will retrieve the system's representation
of the original ground radiance scene.

The lower loop in Figure (3.2) completes the closed
loop model which is used to compute the scanning system error.
If the delay were not present in the lower loop, the signal
delay, td’ through the upper loop would cause us to compare
two different ground "pictures" taken td seconds apart, adding
unnecessarily to the error. Thus, the lower loop is delayed

by t. seconds.

d

Note in Figure 3.2 that detector, preamplifier and
quantization noise are added to the system at the appropriate
points. Details of the various transfer functions and noise

power spectra are discussed in Section 4.0.

3.2 Ground Radiance Model

An important aspect of this kind of study is to devise
an appropriate ground radiance model to represent T(x,y). The
representation of T(x,y) will also impact the analysis; for
example, T(x,y) may be deterministic or stochastic. One would
like to have the flexibility of incorporating the randomness
of ground detail found in nature and it therefore seems that
the stochastic approach is the most appropriate. In analogous
situations, for example, when modeling gust velocities or
height variations on airport runways, an autocorrelation
function for the a.c. component of the quantity of interest
is assumed to take the form
1/2

-a(x2+y2)

A(x,y) = e
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In Reference 9, such a form for ground radiance is employed
and the authors attribute this model to R. C. Clark. The
complete expression for the autocorrelation of the a.c.
component of ground radiance used in this paper is identical

to the Clark model:

1/2
- an2 (x2+y2)
AT(x,y) = e T (3.1)

The parameter x,, may be thought of as a quantitative distance

T
measure between varying ground radiance values. Two important
properties of this model are apparent. First, since Eq. (3.1)
represents the a.c. component only, the variance of T(x,y), oTz,

is given by

0p’ = E{ (T-T) %} = Ap(0,0) = 1 (3.2)

where T is the mean value of the target radiance. Second, when

xp = (Py?) 2 ALy = 172,

T

AT(my)

Xt LARGE

X¢ SMALL

1
(x2+y2) %

FIGURE 3.3
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As illustrated in Figure 3.3, a large value of x,, causes

AT(x,y) to decrease slowly, indicating good poinz to point
correlation of radiance values on the ground. Thus, a large

X would be appropriate, for example, when one wishes to
represent desert areas where ground detail is generally

uniform over large distances. For small Xm the autocorrelation
function drops off rapidly indicating less point to point
correlation. This might occur, for example, when flying over
suburban areas which contain built up sections alternating with
open fields and/or wooded areas. Taking the Fourier transform
of Eq. (3.1) gives the PSD of the a.c. component of ground

radiance:

(3.3)
5 3/2

2 2, .,1n2
kX +ky +(2“XT)

It follows from Egs. (2.12) and (3.2) and may be verified by

direct integration that

o = [PT(kx'ky)dkxdky = 1.

3.3 Analysis of the Model

Having established the model for the ground radiance
function T(x,y), the method of analysis is now fixed. The fact
that T(x,y) is represented by a PSD functicn means that the
total system error will also be derived in terms of a PSD function.
Integrating the error PSD according to Eg. (2.12) yields the
mean square and, in turn, the rms value of the error. For
several reasons, especially when dealing with noise inputs, it
is advantageous to derive the expression for the autocorrelation

function of the error and then to apply Eg. (2.10) to obtain the
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the error PSD. If T' is the actual radiance of the ground scene

after delay, as in Figure 3.2, it follows that the autocorrelation
function of the error, AE, can be expressed by

A
€

E{(T'-T4)+ (T'—T4)}

E{T'+T'} + E{T4+T4}

= A, +A, - C., -cC
0T, T',T,

Taking the Fourier transform of Eqg.

- E{T'+T4} - E{T'T

Tl

(

T4+

3.4) leads to

4+

}

The input/output relationships of Section 2 are now used to

evaluate the various terms in Eg. (3.4).

from Eg. (2.13) and Figure 3.2 that

AT.(X,y) = AT(x,y)*d(X)*d(—X)

It follows directly

where d(x) is the impulse response function of the delay and

AT(x,y) is the target radiance autocorrelation function.

the Fourier transform of Eg. (3.6) yields, from Egs.

(2.16),

2

PT,(kX,ky) = [D(kx)l PT(kx,ky)

4+
(3.4)
(3.5)
(3.6)
Taking
(2.10) and
(3.7)

where D(kx) is the transfer function of the delay and PT(kx,ky)

is the input radiance PSD function.
Section 4.10) that

It is well known

(see




- 18 -~

2
Dk )| =1

so that
PT' (kX'ky) = PT(kX’ky) (3.8)

The evaluation of AT (x,y) is in principle identical to the
4

evaluation of AT,(x,y) but more complicated. From Eqg. (2.13)
and Figure 3.2 it follows that

Ay (xy) = [B(T3 (1), T3 () 3 + B_(x) I%h, (x,y) why (=, -y)
(3.9)

where E{T3(§,§)+T3(§,§)} is the autocorrelation function of the

doubly sampled gquantity T3(x,y), Aq(x) is the autocorrelation

function of the quantization noise and h4(x,y) is the impulse

response function of the reconstruction filter. The effect of

the x—-sampler on E{T3(x,§)+T3(x,§)} is represented by (see

Eg. (2.20))

E(Ty(6,9) T3, 1)) = ) 6 0/x;-n)BIT, (6,§), T3 (,¥) ) (3.10)

n:-—oo

Applying Eg. (2.13) to Figure 3.2 leads to

E{T,(x,¥) T5(x,¥)} = [E{T,(x,¥) T, (x,¥)} + Ag(x)Ixhy (x)xhy(-x)

(3.11)
where Ad(x) is the autocorrelation function of the detector and

pPreamplifier noise. Similarly,
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BT, (x,¥) T, (x,¥) } = E{T) (x,¥) T} (x,¥) }*h, (x) #h, (-x) (3.12)
E{Tl(x,§)+Tl(x,§)} = E: 6(Y/Yi—m)ATl(x,Y) (3.13)
m=-—c
and
ATl(XIY) = AT(XIY)*hl(XIY)*hl("xl—Y) (3.14)

Substituting the results of Egs. (3.10) through (3.14) into
Eg. (3.9) gives

fe o]

Ag, K0¥) = By y)ahy (ox,my) « Y 8(x/x;7n) [hy () #hy () %

n=-o

L2

2: 6(y/yi—m)AT(x,y)*hl(x,y)*hl(—x,—y) + Ad(x)]*h3(x)*h3(—x)
m=—c

+ Aq(x) (3.15)

Taking the Fourier transform of Eg. (3.15) leads to the PSD
function of the output signal of the scanning system. Although
composed of many more terms, the result is basically the result
of Eg. (2.26). Thus,
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@ 2
Py, (kxrky) =Byl k) Z Y|y ik gy (e SRy G- 2
£ & i i X3 X4
n=-—oo [pn=-—cwo
xPr (k= 2ok = o)
i ¥ i
2 o n 2
+’H4(kx,ky)| X ‘HB(k x| Palke g
n=-—oo
| 2
+'H4(kx,ky)' Pq(kx) (3.16)

where Pd(kx) and Pq(kx) are respectively the detector-pre-
amplifier noise PSD and gquantization noise PSD. The next step

is to compute the crosscorrelation terms C in Eq. (3.4).

T' T
4
The procedure is similar to that used to derlve Eq. (3.16) but
the input/output relationships are different. To clarify the
procedure, Figure 3.2 will be cut at the comparator to indicate

the direct 1link between T4(x,y) and T'(x,y); see Figure 3.4.
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Tix, y) Pd P

. T'(x, y) l l
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SAMPLER

T4 {x, vy}

FIGURE 3.4

From Figure 3.4 and Eg. (2.14) it follows that

' N _ _
. 4(x,y)=[E{T (x,y)+T3(x,y)}+CT,+q(X)]*h4( X,-y) (3.17)

where Coo q (x) is the crosscorrelation function of T'(x,y)
+

and the quantizing noise. If it is assumed that signal and

noise are not correlated, then Eq. (3.17) becomes

C (x,y)=E{T'(x,y)+T3(§,§)}*h4(-x,-y) (3.18)
- + 4

From Eqg. (2.21) it follows that
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E{T' (x,y) T, (X,¥) J=B{T' (x,y) T (x,¥)} (3.19)

It will now be assumed at the outset that detector-preamplifier

noise is not correlated with the signal; then Eqg. (2.14) gives

E(T' (x,y) T4 (x,9) J=E(T" (x,¥) T, (x,¥) Iahy (=) (3.20)

Next, from Eq. (2.14),

E{T'(x,y)+T2(x,§)}=E{T'(x,y)+Tl(x,§)}*h2(—x) (3.21)

and, using Eq. (2.21),

E{T' (x,y) T (x,¥) }=E{T" (x,y) T, (x,¥)} (3.22)

Continuing through the aperture,
E{T'(X,y)+Tl(X,y)}=E{T'(x,y)+T(x,y)}*h1(—x,—y) (3.23)

and, finally, from Eg. (2.15),

E{T'(x,y)+T(X.y)}=A+x,y)*d(X) (3.24)

Combining Egs. (3.19) through (3.24) with Eq. (3.18) leads
to

CT,+T4=AT*d(x)*hl(—x,—y)*hz(—X)*h3(—X)*h4(—x,~y) (3.25)

Taking the Fourier transform of Eg. (3.25) gives a result
similar to Eq. (2.17): thus,

Tl

P +T4=ATD(kx)H1(kx'ky)HZ(kx)H3(kx)H4(kx'ky) (3.26)
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Introducing a transfer function for an "advance" circuit,
A(kx), it is noted that

A(kx) = D(kx) (3.27)
so that
Pr +T4=PTA (kx)Hl (kx,ky) H2 (kx) H3 (kx) H4 (kx,ky) (3.28)
In a similar fashion, it can be shown that
PT,T4+=PTA(kX)Hl(kx,ky)Hz(kX)H3(kx)H4(kx,ky) (3.29)

Substituting Egs. (3.29), (3.28), (3.16) and (3.8) into Eq. (3.5)

gives the PSD function of the error, Py in the form

PE: (kX’kY)=PT (erky)

2 = © 2
m n n
+H(k,k)‘ Z Z‘H(k——‘l,k———)ﬂ(k——m(k———)
4 "x' 'y e e 1'7'x Yi Y Yi 27x X; 3'7x Xs
xP_(k - _n,k -
T ' x X, Y Y3
-2Re [P,I(kx,ky)A (k) H; (kx,ky)H2 (k JHy(k )H, (kx,ky) ]
2 n 12 N
+Hy (ko) Z Hy (k= ) | Pglky= 30)
ne—w i i
2
+|H, (kx,ky) Pq(kx) (3.30)

where Re[ ] indicates the real part if the quantity.
The first three terms of Eq. (3.30) can be combined so that
Pe(kx'ky) becomes



P5=PT(kx'ky)|HlH2H3H4A_ 1

2 e o
. _n ., _ m _n _n
- +|H4(kx'ky)' Z Z |H1‘kx ik, yi)Hz(kx Xi)H3(kX =)

- 24 -
'2

1

n:—OO m:—oo
n,m#0

. _2 .
+‘H4(kx,ky)’ Z ‘H3(kx— 2| e (k- )

n=-o

2
+‘H4(kx,ky)l Pq(kx)

Eq. (3.31) conveniently breaks out into four distinct terms.

The first two are termed the fidelity PSD terms, one being

the classical fidelity term and the other the contribution

due to sampling (also known as the aliasing terms).

and fourth terms are the contributions to the error due to

[ee]

detector-preamplifier noise and quantizing noise.

square error, 52, from Eq. (2.12), is

’ dk
Pe(kx ky)dkX v

2
i
(3.31)
The third
The mean
{(3.32)
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where the fidelity error is

oo

' 2
2
e = ff PT(kx,ky)(HlH2H3H4A- 1‘ dkxdky

- 00

n:—oo m=—oo
n,m#0

) 2 ®
n m n
+[[ .H4(kx,ky)! }: }: 'Hl(kx_ ’}E—irky" ﬂ)Hz(kx' x_;)H3(kx_

2

n
- PT(kX—

er"—m_)
i i

Y

XH4(kx_ xi

Lk - =) dk dk
Yy i X Yy

the detector-preamplifier noise error is

il 2
a [ Umatsrp | Y
-— OO n=_w

and the quantizing noise error is

2
2
g _]/ ‘H4(kx,ky)| Pq(kx)dkxdky

The rms error is formed from Eg. (3.32):

. d .
1 i

2
n n
Hy(k = =) | Pglk - o= )} dk Ak

—)

(3.33)

(3.34)

(3.35)

(3.36)
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The next step is to normalize the rms error with respect to

the mean value of ground radiance.

3.4 Mean Target Radiance

A value for mean target radiance, T, is now derived
so that it may be used as a normalizing factor for the rms
error. The equation for variance, Eg. (3.2), may be expanded

in the form

0 =EL (T (x,y) -T) 2 }=E{1? (x,y) }-2B(T (x,y) T }+E{T?) (3.37)

where T is the mean value. Clearly,

E(T® (x,y)} = T° (3.38)

2 . .
where T” is the mean square value of radiance. Also,

E(T (x,y)T} = TEIT (x,y)} = T2 (3.39)
where T2 is the square of the mean value of radiance. Finally,
E{T?}) = T° (3.40)

since T is a constant. Substituting Egs. (3.40), (3.39) and
(3.38) into (3.37) yields

T - T =1 (3.41)

It is now assumed that the range of expected radiance values

will be equal to the mean radiance; that is,

AT = T (3.42)
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Furthermore, it is assumed that all values are equally probable.
That is, if f£(T) is the probability density function for T(x,y).,
then

£(T)

H

(const.),E—E/ZiT(x,y)iT+5/2

and (3.43)
f(T) 0, all other values of T

Note that the required condition of probability density functions

is satisfied:

w 3T/2
J[ f(T)dT = %- /~ dT = 1
T )
- T/2

The mean square value of radiance, T2, can be computed from

® 3T/2
72 = J/.f(T)Tsz =1 T’ar = 72 (%) (3.44)
T
- T/2
Combining (3.44) and (3.41)
T = 12

or _ {(3.45)
T = V12

This value of mean radiance can be used to normalize the rms
error; thus, dividing through Eg. (3.36) by T gives
1/2
(3.46)

o1
i
)
H
+
oM
Q
+
™
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where ¢ is the total normalized rms system error; thus,

e = ¢/T (3.47)
Ef = af/i (3.48)
Ed = ed/i (3.49)

and

= T 3.50
€ eq/ ( )
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4.0 DETAILS OF SYSTEM PARAMETERS FOR THE S-1392 SCANNER

4.1 Signal-to-noise Ratio of the Detector

The detector signal-to-noise ratio must be established
so that it may be used to scale the detector noise PSD function
described in Section 4.4. The signal-to-noise ratio is obtained
directly from projected or measured NEAp values of the particular
channels. Due to the stochastic representations of noise and

signal, NEAp will be defined as the ratio of rms noise, n, to
— 1/2
rms signal, (T7) , and, therefore is a direct inverse of a

signal-to-noise ratio. From this definition,
(22| V2
|22

and it follows from Egs. (3.41) and (3.45) that

- /
n = (Y13 ) NEAp (4.1)
where n is found from
-2 2 2
n‘ = 2a P4 (£) |H; ()| af (4.2)

0
The constant a2 in Eq. (4.2) is the scale factor to be determined.

Combining Egs. (4.1) and (4.2), lead to

(V13 ) NEap (1.3)

2 1/2

2 pd(f)|H3(f)| af




Projected values of NEAp for the S-192 Multispectral Scanner
can be found in Reference 4. As shown in Section 4.4, a2 is
used as a scale factor for the detector-preamplifier noise
PSD. This is how NEAp is incorporated directly into the over-

all rms system error.

4.2 Detector Parameters

Photoconductive Time Constant: The frequency at which

the detector responsivity begins to roll off is designated
fr' It is related to the photoconductive time constant, Tpc,
through

1
T = — (4.4)
pc 21Tfr
(See Figure 4.1 for a representation of detector response.)
Actual S-192 detectors have values of Tpc in the neighborhood
of 40u seconds.

Detective Time Constant: The frequency at which generation -

recombination noise intersects the Johnson noise level is refered

to as fd. The detective time constant, T4 is related to fd
through
_ 1
‘a T mEg (4.5)

Values of 1, of 1lu second are claimed for the S-192 detectors.

da
4.3 Required System Bandwidth

The system bandwidth is based on the sampling rate

(Samples/IFOV*) and orbital parameters of the Skylab spacecraft.

*TFOV - Instantaneous Field of View
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It is derived by taking half the information bandwidth of the
system. For $-192, taking 1 sample/IFOV, it can be shown that
the required system electrical bandwidth, fO’ is

f0 = 167 KHz (4.6)

4.4 Detector - Preamplifier Noise Bandwidth

The detector-preamplifier noise PSD, Pd(f), can be
represented by [3,4]

{1+ (f/fd)2 {fr\z
P (f) = a” - + b\f-, (4.7)
1+ (£/€)° d
r
where f is frequency in Hertz, a is the constant defined in
Eg. (4.3) and b is a constant involving a number of factors
such as temperature of the detectors, temperature of the
transistors, detector resistance, etc. [4] The relationship
between the temporal frequency f, the x-spatial frequency,
kx’ and the scanning rate along the x direction, v, is
f=v kx (4.8)
Thus, Eg. (4.7) can be written
1+ (ko/ko)C k|2
2 + x’ "xd Xr (4.9)
Pd(ka)=a 2+bk——
1l + (kx/er) xd
where er = fr/v
and kxd = fd/v
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Actually, one more operation is required on Eg. (4.9) before
it can be substituted into Eq. (3.34). The represention of
Eq. (4.9) is based on the one dimensional character of the
detector-preamp noise and is really suited for evaluation

by a one dimensional integration ih>kk. Therefore, Eq. (4.9)
should be normalized by a factor

2
H,(k_/k dk_ .

4.5 Quantization Noise PSD

The mean square error due to quantizing is given by
[13]

2
= {1 |ap?
fq T T3 Zzn)AT (4.10)

where n is the number of bits assigned to each guantizing
level and AT is, as defined in Section 3.4, the expected
range of radiance values. The normalized mean square value

of quantizing error is

-2 _ 1f 1 Jar, 2
£q 12| 2n} "' =

or, recalling Egq. (3.42),

fy " '1%("2? (4.11)
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Since Eq can be computed directly, there is no necessity to
construct a PSD function, Pq’ for quantizing noise. Actually,

Pq simply served as a formalism in the derivation of Eqg. (3.35).

4.6 Aperture Transfer Function

The system aperture transfer function is defined as
the Fourier transform of a rectangular scanning aperture divided
by the area of the aperture. The impulse response function of

such an aperture is

X Yy
d d
( l/Xder |x|_<_ _‘21‘Y|i p)

hy (x,y)
0, all other x and y

The corresponding transfer function is

sin(nxdkx)s1n(nydkzl

Hy (koK) o (4.12)
X'y

Xa¥q

The actual S-192 IFOV is 1.82 x 10_4 radians which, using Skylab
orbital parameters, projects a 260'x260' rectangle on the ground.

Thus, xd=yd=260 ft.
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4.7 Detector Transfer Function

The detector is assumed to have a transfer function
of the form

1

H (f) = m (4.14)

2

where j = V-1. Using Eq. (4.8), Eg. (4.14) can be written

1
H (v k) = : (4.15)
2 ple 1+3(k /k )
For the S-192 system, fr = 4KHz meaning that detector response
begins rolling off around 4KHz.
4.8 Detector Electronics Transfer Function
Detector electronics encompasses the preamplifier,
boost circuit and filter. Each component will be described
separately.
Preamplifier: The preamplifier transfer function is
described by
H (f) = i (4.16)
P 1+ £/£ *
P
where, for the 5-192, fp = 2.0 MHz.
Boost Circuit: As stated in Section 4.7, the detector
response begins rolling off at 4 KHz. Eg. (4.6), on the
other hand, states that the required system bandwidth fo is
167 KHz. A boost network is therefore introduced to enhance
the detector response over the required bandwidth. The transfer
function for the boost network takes the form
f jf + £
= Pf(____¥
HB(f) = ST T T (4.17)
r b
For the S-192 system, f,_ = 260 KHz.

b
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System Filters: The S-192 has a 2 pole Butterworth

filter rolling off at the system bandwidth and has, in addition
3 poles of RC filtering; there is a double pole at f1 = 600 KHz
and a single pole at f2 = 450 KHz. Thus, the filter transfer

function takes the form

1
[.707+3 (£/€,+.707) 1 [.707+] (£/£4-.707) 1 [] f/f1+l]2[j £/£,+1]

Ho(f) =

(4.18)
The simulation has been kept flexible enough to incorporate
any kind of filtering. Combining Egs. (4.16), (4.17) and (4.18)
ct

electronics;

It

~
N/

leads to the transfer function of the dete

H3(f) = Hp(f)HB(f)HF(f) (4.19)

4.9 Reconstruction Filter

Ideal reconstruction is assumed; that is, the impulse

response function of the reconstruction filter is

., X/ .omy/
sin X; sin Y,

h,(x,y)
4 T XY

where it is recalled that Xy and y; are the x and y distances
between samples. The corresponding transfer function is

r

1
1, k < ko<
X— 2xi y 2yi
H4(kx,ky) = < (4.20)
1 1
0, k> k>
_ X 2xi y 2yi




4.10 Delay Transfer Function

The delay takes the standard form

-21jft

D(f) = e d (4.21)
or, from Eq. (4.8)
-271jk_8
D(vk) = e xd (4.22)
where td is the delay in the upper loop of Figure (3.2) and
Sd = vtd is an equivalent distance delay. ©Note that
Ip|? =1

4.11 Parameters Available for Variation

The system parameters that were varied in the

simulation are listed below.

Aperture and Scale Distance (xTéidl: The ratio of xT/xd
represents the resolution capability of the system in relation
to a particular ground scene. When xT/xd = 1, the ground
radiance autocorrelation function half amplitude point is equal
to the IFOV. As the ratio XT/Xd increases beyond unity., che
relative resolution capability of the instrument improves and
the rms error should decrease. For ground scenes with high
information content, that is, xT/xd < 1, the error should be
greater,

Scanning/Sampling: It is not generally true that increased

sampling continues to improve system accuracy. Even in noisless
systems there are two factors limiting increased accuracy through
increased sampling. First, a theoretical factor, the Shannon

sampling theorem [11], states that a band limited signal with a
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finite upper frequency limit of F Hz. can be completely specified
by sampling at instants of time separated by 1/2F. Although the
radiance signal represented by Eg. (3.3) is not bandlimited, the
effect of the aperture function and subsequent filtering (before
sampling) is to produce an almost bandlimited signal with little
frequency content above the bandwidth of the S-192 system. Hence
little improvement in system accuracy should be expected by
sampling more than twice per IFOV. Second, there is the practical
consideration of the sampling method in the S5-192 scanner. With

a fixed scan rate v, a particular IFOV is always sampled once in
the y- direction while increased sampling rates mean that only

the number nf cross track, or x, samples increases. Thus, additional
information on the y-dependent portion of the signal is not gained,
and this places another limit on improvement through sampling.
These two reasons do not, however, represent the main argument
against unlimited increase in sampling rates. The utilization

of an increased number of samples/IFOV requires that the system’
bandwidth be proportionately increased. This requirement leads

to additional boosting of the detector response. Boosting

beyond the detector frequency fd leads to a disproportional
increase in noise relative to signal. Thus it is clear that

an optimum bandwidth and a corresponding optimum sampling rate

will exist.
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5.0 RESULTS OF THE SIMULATION FOR THE §-192 SCANNER

5.1 Simulation Output

The simulation results of the rms error analysis
include:

ep = normalized rms fidelity error (Egs. (3.33) and
(3.48)):

€q ~ normalized rms detector-preamp noise error (Egs.
(3.34) and (3.49)):

e = normalized rms quantizing noise error (Egs. (3.35)
and (3.50)):

e =~ total normalized rms system error (Egs. (3.36) and
(3.47)).

For the actual calculation of Eq, Eq. (4.11) is used. This
guantity remains constant for all cases. In the 5-192 system,

the number of bits assigned to each quantizing level is n=8;
thus,

e = .001128
q

Aside from the two major parameter variations discussed in
Section 4.11, the results presented are also representative of
the noise properties of typical channels. Projected [4]
maximum and minimum NEAp channels were selected and a nominal
(NEAp = 1%) channel was constructed; their properties are
listed below:

o Id NEAp
Channel 1 44usec lusec 3.0 %
Channel 7 40usec lusec 0.57%
Nominal 40usec lusec 1.0 %
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5.2 Discussion of Results

Variation of Resolution Capability (XT/XiL: Figure 5.1

illustrates the expected reduction in €. as xT/xd increases and

also indicates the effect of placing thi delay in the lower loop.*
The normalized rms fidelity error drops below 10% when xT/xd = 2
and one sample per IFOV is taken. Figure 5.2 illustrates the
variation of total rms error for the three channels of interest.

The effect of higher NEAp is apparent.

Effects of Sampling: Figure 5.3 shows the variation of Ef,
and ¢ with sampling rate for channel 1 when xT/xd is unity.**

€

d

The fidelity error, drops steadily with increasing sampling

Ecr
rate until it approacies an asymptotic value of about 12.7% at

2 samples per IFOV. (This curve is the same for all channels as

it is independent of noise.) The results of Figures 5.3, 5.4, and
5.5 reflect the fact that the system bandwidth is expanded propor-
tionately to accommodate the higher sampling rates. As asserted in
Section 4.11, the rms detector-preamp noise increases rapidly with
increasing sampling rate and soon wipes out any improvement in
fidelity error. Significantly, for Channel 1, the optimum

sampling rate (minimum ) is less than one sample per IFOV.

Figure 5.4 illustrates the effect of sampling rates on the

projected minimum NEAp channel, channel 7. Here, the optimum
sampling rate is about 1.8 samples per IFOV. The same information
for the nominal channel, the one meeting the EIS noise specification

(NEAp = 1%), is contained in Figure 5.5 and the optimum sampling

*Al1l subsequent results include the delay.

**The case xT/xd = 1 is felt to be representative of
the kind of ground scene the instrument might be reasonably expected
to handle. This can be justified by noting Figure 5.1 which indicates
that for values of XT/XG less than unity, the fidelity error increases

beyond an acceptable point (15%).
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rate is seen to be 1.3 samples per IFOV. Because the total rms
system error has a shallow minimum, a sampling rate of 1.1
samples per IFOV is close to optimum.

Several runs were made where sampling rate was varied
while system bandwidth was held constant at nominal value. The
maximum improvement in Ef for this procedure was under 0.5%.

The original S-192 design had four "high" resolution channels
(130' x 130') which were sampled at twice the rate of the "low"
resolution channels (260' x 260'). Detector development problems
led to replacement of the "high" resolution channels with "low"
resolution channels [3] although the sampling rate in these bands
was left unchanged to avoid impacting the timing and recording
schemes. Thus eight of the channels are being sampled 2.2 times
per IFOV although their bandwidth fits the one sample per IFOV
value (167 KHz). As mentioned above, additional sampling without
additional bandwidth adds nothing to system accuracy but does

add unnecessarily to the bit rate.

Filtering: Filter variations, say 5 pole Butterworth instead
of 2 pole Butterworth - 3 pole RC, do not significantly impact
overall system error. Ground scene and aperture are the major
contributors to fidelity error and changes in equivalent system
bandwidth of about 10% will not greatly effect the final result.



6.0 CONCLUSIONS

The major conclusions of this study are:

1. The optimum sampling rate for a channel whose detector

just meets noise specification is 1.3 samples per IFOV.

2. The present S-192 design sampling rate for five of the

thirteen channels is 1.1 samples per IFOV.

Because the total

system error has a shallow minimum, the design sampling rate

is close to optimum.
held in some quarters
bandwidth limited.

3. Sampling the

IFrQoV does

4. The approach

This result is in opposition to the view
that the $-192 system is digital data

remaining eight channels at a rate of 2.2

erformance.

used in this paper to evaluate the performance

of scanning systems provides an effective, workable tool for

design and analysis.
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APPENDIX A

Theorems on Sampled Functions

Several theorems on sampled functions which are used
in the main portion of this report are proven here. Some of
the theorems of Appendix A (and of Appendix B), in one form or
another, appear elsewhere [8,10,11,12]. The reason for repeat-
ing them here is to present them in a more unified context.

The following lemmas, necessary in the proofs to follow,
will be stated. Proofs may be found in Papoulis [10].

Lemma 1:
f(t)s (t-—to) = f(to)é (t-to) (A-1)

where 6§ (t) is the unit impulse (Dirac delta) function.

Lemma 2:

«©

j’ 6(T—tl)6(t—r—t2)dr

-0

I

6(t—tl)*6(t—t2)

G[t-(tl+t2)] (A-2)
Lemma 3:
§(at-t.) = Tor 6 (t-t _/a) (A-3)
0 [a 0
Assuming stationary and ergodic functions, the one

dimensional autocorrelation and crosscorrelation functions can
T

E{x x} = Ax(c) = lim % f x(t)x(t+g)dt (A-4)
T
=T

be written




T
. 1
E{x+y} = Cx+y(€) = %iz 37 J( x(t+z)y (t)dt (A-5)
-T
and P
E{xy+} = Xy (z) = lim %?- ‘[ x(t)y (t+z)dt (A-6)
+ T
-T

Given a function x(t) whose first derivative is piecewise
continuous and whose amplitude is sampled at intervals of ti;

the sampled function, x(£), will be represented by

x(¥) = E: x(£) 8 (/¢ -m) .

m=-—oo

Theorem 1:

The crosscorrelation function of two sampled functions,
x(¥) and y(%),

0

where x(%) = 2: x(t)s(t/ti—m) (A-7)
m=-—oc

and y () = }E y (£) 6 (t/t;-k) (A-8)
k=—-w

may be represented by*

E{x(¥),y()) = }E Cy y (B)6(t/t;-m) (A-9)
+

m:—(!)

*The "expected value" representation of the autocorrelation
and crosscorrelation functions is superior because it clearly shows
which quantity is sampled and the independent variable involved

in the sampling process.



Proof:
From (A-1) and (A-3), noting that ti>0, (A-7) and
(A-8) can be written

[od

x () = t, Z x (mt,) 6 (t-mt ) (A-10)
m=—o
and
" [¢ o]
y(®) = ¢, Z y (kt,) 6 (t-kt,) (A-11)
k=—oo

Substituting (A-10) and (A-11l) into (A-5) gives

E{x(¥), y(©)) =

T
. l 2 (o] (o]
lim 5=t f{z y (kt )6 (1-kt, ) Z x (mt+kt,) 6 (t+r-mt, -kt ) > At
-T

T>o
=0 m=-—o

or

E{x(¥), y(®)) =

T
. l 2 (o] o]
%iﬁ ET'ti z: 2: y(kti)x(mti+kti)-[ s (T kti)é(t+r mt . kti)dT
m=-—co K=-—o -T (A—12)
Let T = (2N+1)ti. Then the limits of the integrand in (A-12),
-T<t<T can be replaced with -»<1<> by limiting the sum over k
from -N to +N; that is,

E(x(t), y(®)} =
2 w

(o]

t, N

im o=t S i . -kt. +1-mt. -kt.

IJ\L;:: R Z L y(kti)x(mtl+ktl)] 5 (t-kt;) 8 (t+r-mt, -kt,)dr
1 n==e k==N Zw (A=13)




The integral in (A-13) can be evaluated using (A-2) and (A-3):

o oo

-/-G(T—mti)é(t+T—mti—kti)dT .[VG(T*kti)6(mti+kti—r—t)dT

-0 -0

= 6[—t—(kti—mti—kti)] 6(-t+mti) = G(t—mti) (A-14)

It is also recalled that an ensemble average may be used to

compute the crosscorrelation function {11]; thus

N
(mt,) = lim S — Z y (kt ) x (mt +kt ) ’ (A-15)

C
X,y Nosoo (2N+1) Lo

Substituting (A-15) and (A-14) into (A-13) yields
E{x(€), y(¥))

E: t. C, Y(mti)a(t—mti)
m=—co +

or using (A-1) and (A-3),

E{x(%)+ v(t)} = 2: C, ,(E)8(E/E;-m) . Q.E.D.
+

m=-—-co

A corrollary to this theorem is that the autocorrelation of a

sampled function may be represented by

E{x(%)+ x(¥)}) = EZ A (£)8(t/t,-m) (A-16)

m=~

This may be proved by letting x(¥) = y(¥) in (A-9) and

recognizing that CX+X = Ax.




Theorem 2:

The crosscorrelation of a sampled function, x (£),
and a non-sampled function y(t) is

E{x(%)y(t)+} = C,, (A-17)
+

In words, the fact that one of the terms being correlated is

sampled does not alter the form of the crosscorrelation
function.

Proof:

Proceeding as in Theorem 1,

AV . . -
E{x(t)y(t)_l_f

= lim j%-‘/.y(t+r) z: x(r)d(r/ti—m)dt

-T m==co

or using (A-1) and (A-3)
T

. oo

Elx(®)y(t),} = lim 5 fy(t+T) Z x (mt,) 8 (t-mt,)dr (A-18)
T->

+

=T m=-

Letting T = (2N+l)ti and exchanging limits on m and 1 leads to

E{x(D)y(t),}

(o]

t. N

= 1lim T§ﬁ$%TE— Ej x(mti) -[. y(t+1)6(T—mti)dT (A-19)
N> i "
m=--N -




Recalling Eg. (2.3) and recognizing the ensemble average form
of the crosscorrelation function, (A-19) leads to

N
Etx(®)y(t),} = Lim -(-2-1-\]%-1-)- Z x (mt, )y (t+mt, )
N>
m=-N
= C J.E.D.
Xy+ o

A corollary to Theorem 2 is that the crosscorrelation function
of a sampled function x(¥) and its non-sampled generator, x(t),
is the autocorrelation function of x(t).
substituting y(t)

This is proved by
x(t) in Egq. (A-17); thus,

E{x(%)x(t)+} Cop = A, (A-20)
+




APPENDIX B

Consequences of the Previous Theorems

The relationship between the PSD, ﬁx(f), of a sampled
function x(%) and the autocorrelation function Ax(t) will be

developed. The one dimensional forms of Egs. (2.8) and (2.9)

are
> -2mift
P_(f) = ‘/’ A (t)e dt
and
r 2nift
(+) = D {+Yea A4
Ax(t) = ‘j P (tie dt

The PSD of the sampled function is found from

(o]

" N -2njft
X(f) = ‘1' E{x(t)+ x(t) }e dt

-0

de

Substituting (A-16) into (B-3),

et oo "2Tfjft
Bx(f) = Jf 2: A (£)6(t/t, -m)e at

-0 m==—co

Using (A-1) and (A-3),

N = 3 -21jft
B (£) = }Z t;A (mt,) jf s (t-mt,)e at

m=-o




—l/2ti

Recalling Eg. (2.3), (B-5) can be written
" o -21jfm ti
‘ B (f) = Z A (mt.)e t, (B-6)
> m=-—oo
. The inverse relationship is established as follows. Multiply
2njfp t. 1 1
both sides of (B-6) by e and integrate over - 5t <f< T
i i
Then,
/
172ty n 2njfp t, % 1/2¢; 213 f (m-p) t
B_(f)e af = t, Z A_(mt,)e df
X i X i
m=-=co Py
-l/2ti -l/2ti (B-7)
Letting z = 2ntif
and dz = 2ﬂtidf
it can be shown that
1/2¢t, T
/. 1 21rjf(m—p)ti 1 z (m-p) 1,p=m
ti e df = 5. e dz = 0, p#m
‘ Thus, (B-7) leads to
l/2ti
N 2njfp ti
. Ax(pti) = Px(f)e af (B-8)



Note the important consequence that

1/2t,
x(H? = a_(0) = J/- Bx(f)df (B-9)

‘1/2ti

where x(ir\-i)2 is the mean square value of the sampled function
x(t).

A very useful equation would define the relationship
between the PSD functions of a sampled and unsampled quantity.

Eg. (B-3) may be written in the form

Y AY
B (£) = FIE{x() x(E)]] (B-10)

From (A-16), (B-10) becomes

Y
B(£) = FLy A (8) (t/t;-m)]

or using the Borel convolution theorem,

(\I [o0]
B (£) = F[A_(£)]+FI E: s (£/t;-m)] (B-11)

m=-—o

where the asterisk represents convolution.
It follows directly from (B-1) that

P_(f) = F[A ()] (B-12)




It is proved by Papoulis [10] that

F[Z s(t/t;-m)] = 2 5 (£F-m/t, ) (B~13)

m=-—ow m=-—cw

Combining (B-11), (B-12) and (B-13) gives

[e o}

ﬁx(f) 2: j[ P_(E-£')6(£'-m/t, )aAf"

m=-ow

- 00

or

E[ P (£-m/t;) (B-14)

m=-—oo

B, (£)



